

NCC-003-1272002 Seat No. _____

M. Sc. (ECI) (Sem. II) (CBCS) Examination April / May - 2017

Advanced Digital Electronics: Paper - VI

Faculty Code: 003

Subject Code: 1272002

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

- 1 Answer the following questions in brief. : (any seven) 14
 - (1) Explain working of RS Flip-Flop as key de-bouncer.
 - (2) Explain in brief synchronous and asynchronous inputs to Flip-Flop.
 - (3) What is mulfivibrator? Define various types of multivibrators.
 - (4) Explain modules of counter.
 - (5) Draw the diagram of ring counter and explain in brief.
 - (6) Compare asynchronous counter with synchronous counter.
 - (7) Enlist types of Analog to Digital converters.
 - (8) Define resolution and conversion time for an Analog to Digital converter.
 - (9) Enlist various types of programmable logic devices.
 - (10) Compare fixed logic to programmable logic.
- 2 Attempt any two of the following questions: 14 (Each 7 marks)
 - (1) Enlist and explain various timing parameters of Flip-Flop.
 - (2) Enlist various types of shift register. Explain working of any two types of shift register with help of necessary diagrams.
 - (3) With help of neat diagrams explain both types of Digital to Analog Converter.

3	Answer the following questions:		
	(1)	Describe programmable Logic Array (PLA) architecture.	5
	(2)	Design a mod-6 asynchronous counter and explain its working with help of neat diagram.	5
	(3)	Write a detailed note on JK flip-flop.	4
		\mathbf{OR}	
3	Answer the following questions:		
	(1)	How counters can be cascaded? Explain with suitable example.	5
	(2)	With neat diagram explain the working of a 4-bit shift counter.	5
	(3)	Write a detailed note on various programmable interconnect technologies.	4
4	Answer the following questions:		
	(1)	With necessary diagrams explain flash type Analog to Digital converter.	5
	(2)	Write a note on monostable multivibrator.	5
	(3)	Explain working of 3-bit binary asynchronous counter with help of neat diagram.	4
5	Answer any two of the following questiton. (Each 7 marks)		14
	(1)	Write a detailed note on D latch, Also explain edge triggering.	
	(2)	With help of neat diagrams explain working of 3-bit binary synchronous counter.	
	(3)	With help of neat diagrams explain successive Approximation type Analog to Digital converter.	
	(4)	Give a detailed account on complex programmble Logic Devices (CPLD) architecture.	